icf.com

We are ICF Modelling industrial decarbonisation

Ravi Kantamaneni

Senior Director

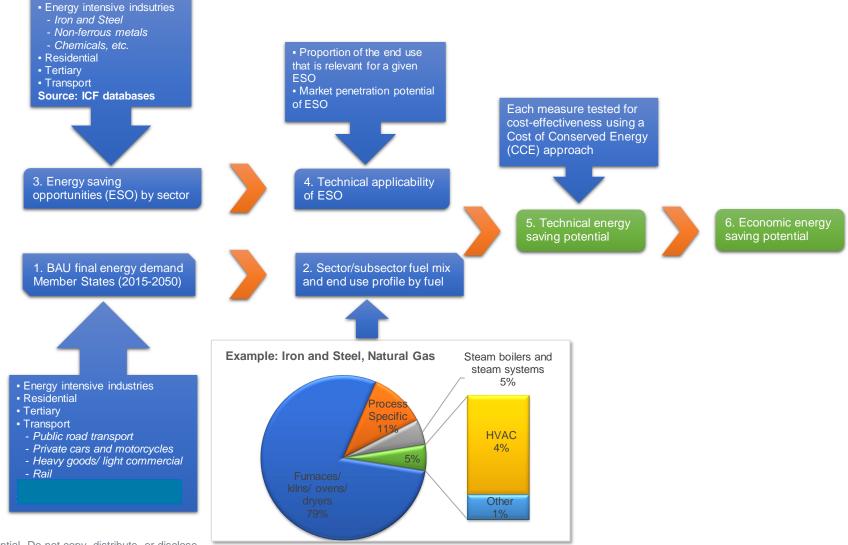
5 October 2021

The industrial landscape

Industry is extremely diverse

- NACE C (manufacturing) has >330 subsector codes
- Industrial profile varies from on to another
- Some industrial processes are completely bespoke
- Industrial environment at Member States are also diverse
- Need for very high heat and process emissions
- Economic factors including low profit margins, capital intensity, long asset life, and trade exposure.

Energy Efficiency Opportunity Assessment Model (EEEO)


- Uses a baseline energy consumption for each sub-sector (iron and steel, petrochemicals, passenger transport or freight transport etc)
- An extensive Energy Saving Opportunity (ESO) database developed by ICF, which currently contains the following number of individual measures:
 - Industrial 210 measures
 - Tertiary 84 measures
 - Residential 77 measures
 - Transport 22 measures

Robust bottom-up methodology to calculate technical potential and economic potential of each member state

Inputs – ESO definition

- Energy saving potential (for each fuel type)
- Availability (immediate or end-of-life)
- Lifetime of technology
- Year first available
- Capital cost
- Operating cost (fixed and variable)

Model Framework

ICF proprietary and confidential. Do not copy, distribute, or disclose.

Output – Technical and Economic saving Potential

Technical savings potential

- Consumer preference of technology Prevents double counting of savings against baseline
- Current market uptake Assessment of ESO penetration in current year (for sector, country, etc.)
- Future market uptake Retrofit of baseline technology at end of life in 2030/2050
- Measure/technical applicability Refers to the proportion of facilities with relevant equipment

Economic saving potential

- Calculated using cost of conserved energy methodology (CCE) i.e., €/KWh saving
- CCE is then compared against the relevant retail tariff for that year to judge whether a ESO is economically viable

Technical and Economic energy saving potential for EU in 2030

Sector Group	BAU projection	Economic Potential	Technical Potential	Heat savings
	[MTOE /yr]	[MTOE]	[MTOE]	[%]
Refineries	42.5	1.9 (4.5%)	10.6 (25%)	73%
Iron and Steel	67.5	3.1 (4.6%)	16.3 (24%)	55%
Non-Ferrous Metal	8.6	0.5 (5.8%)	1.9 (22%)	42%
Non-Metallic Mineral	36.9	1.3 (3.6%)	7.2 (19%)	60%
Pulp and Paper	37.3	1.4 (3.8%)	7.2 (19%)	49%
Chemical and Pharmaceutical	66.4	3.2 (4.9%)	16.5 (25%)	45%
Food and Beverage	26.3	1.7 (6.5%)	6.8 (26%)	35%
Machinery	19.8	1.3 (6.5%)	5.3 (27%)	17 – 21%

Top economic energy saving potential - EU

- Exhaust gas heat recovery
- Advanced heating and process control
- Integrated control systems
- Higher efficiency burners
- Flue gas monitoring
- Energy Management Systems
- Sub-metering
- CHP
- Steam trap survey and repair
- Combustion optimization

What's the problem

- Internal perspective needs to be considered
- Internal barriers (economic, organisational behaviour, competencies)
 - Capital availability
 - Hidden cost
 - Risk
 - Low status of energy efficiency
 - Inertia and bounded rationalities
 - Imperfect evaluation criteria
 - Competencies and awareness

Ravi Kantamaneni | Senior Director ravi.kantamaneni@icf.com

https://www.icf.com/insights/workforce/charting-evolution-corporate-citizenship https://www.icf.com/insights/environment/deliver-net-zero-carbon-commitment

icf.com

About ICF

ICF (NASDAQ:ICFI) is a global consulting and digital services company with over 7,000 full- and part-time employees, but we are not your typical consultants. At ICF, business analysts and policy specialists work together with digital strategists, data scientists and creatives. We combine unmatched industry expertise with cutting-edge engagement capabilities to help organizations solve their most complex challenges. Since 1969, public and private sector clients have worked with ICF to navigate change and shape the future.