



# The framework for evaluation of technical and economic potential in heat pump-based new district heating systems



Gasper Stegnar

Jozef Stefan Institute and University of Ljubljana Nantes, FR, 7.5.2019

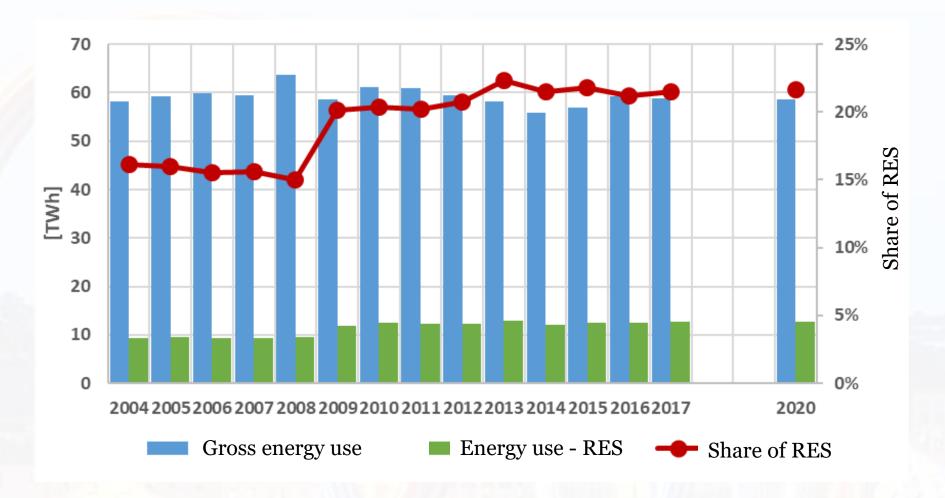






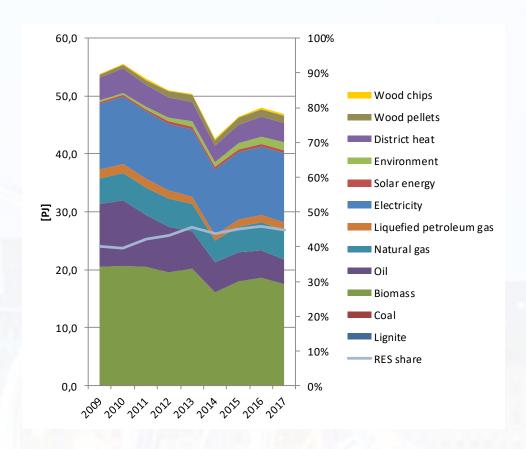






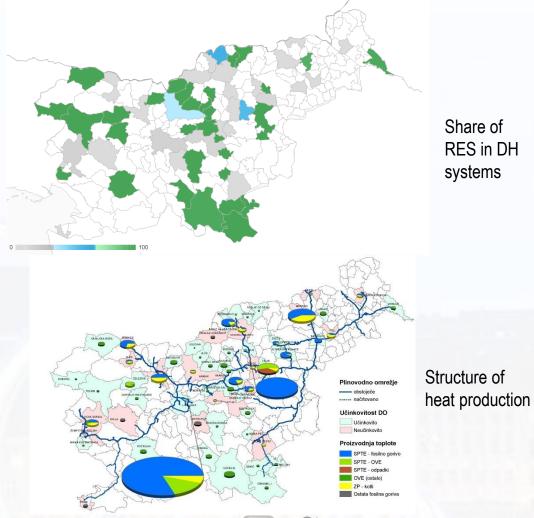

### Outline

- Road to low carbon energy systems: Where are we?
- Energy status in Slovenia
- The methodology and original work
- Development of shallow geothermal energy potential model
- Development of new DH area model
- Role of shallow geothermal energy in transition to low carbon energy systems
- Conclusions




### Road to low carbon energy systems: Where are we?




### Energy status in Slovenia: HOUSEHOLDS

- Residential sector represents 23% of final energy consumption;
- 20,9% reduction compared to 2009;
- 45% share of renewable energy sources in 2017;
- Wood fuels prevail among consumed energy sources;
- The **shift** in the **heating systems** replacement structure was very different between dense and sparsely populated areas.
- Increase of geothermal and solar thermal energy technologies in the past years.



### Energy status in Slovenia: DISTRICT HEATING

- 96 district heating (DH) systems in Slovenia supplies energy, 27 are 100% renewable.
- DH system development is characterized by two aspects:
  - (1) improving the efficiency of systems, and
  - (2) increasing the diversity of sources for the production of heat.
- By deploying the 4th generation of DH systems, the cost-effectiveness of decarbonisation will be additionally ensured.

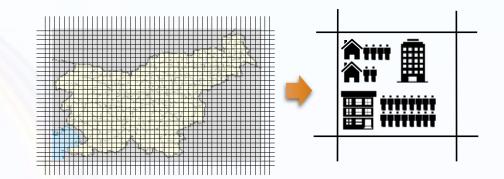


### Original work

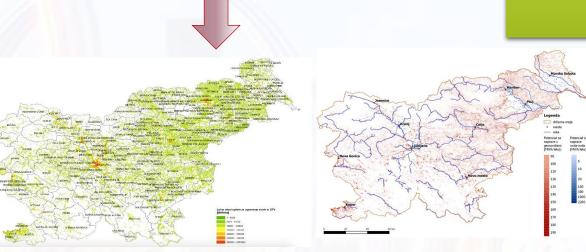
- cost-effective new DH area model that determines new DH areas where heat could be supplied in a <u>cost-effective manner</u>;
- framework of shallow geothermal energy potential assessment that takes into account:
  - o actual heat demand and ground properties on site,
  - thermal interference of neighbouring systems and
  - o economic aspect.



### The approach


**ENERGY NEEDS** 

EXISTING DH INFRASTRUCTURE


DEVELOPMENT OF SHALLOW **GEOTHERMAL ENERGY** POTENTIAL MODEL

**DEVELOPMENT OF** IDENTIFICATION OF NEW DH AREA MODEL

THE ANALYSIS OF TECHNICAL AND ECONOMIC POTENTIAL



1.2 million buildings and 92 millions m<sup>2</sup> analysed

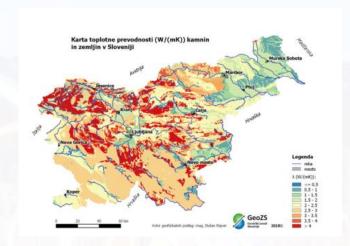




### Development of shallow geothermal energy potential model - aspects

#### Aspects taken into account:

#### **Constraints:**


- 1. Exclusion areas: water protection areas, artesian aquifers
- 2. Warning areas: aquifers, groundwater just below the surface, emerges of gas, avalanches, higher karstification, etc.

#### **Factors:**

- 1. Ground surface temperature
- 2. Thermal conductivity of rocks and soil
- 3. Density of geological layers
- 4. Volume heat capacity

#### **Economic:**

- Ground-coupled and groundwater heat pump systems
- Capture of energy with BHE and with groundwater systems
- Yearly maintenance costs and lifetime of technology





### Development of shallow geothermal energy potential model - main advantage

#### The model:

- 1. checks how much energy needs to be extracted from the ground according to the building's demand and
- 2. accounts for thermal interference between neighbouring systems and the long-term impact on natural conditions.



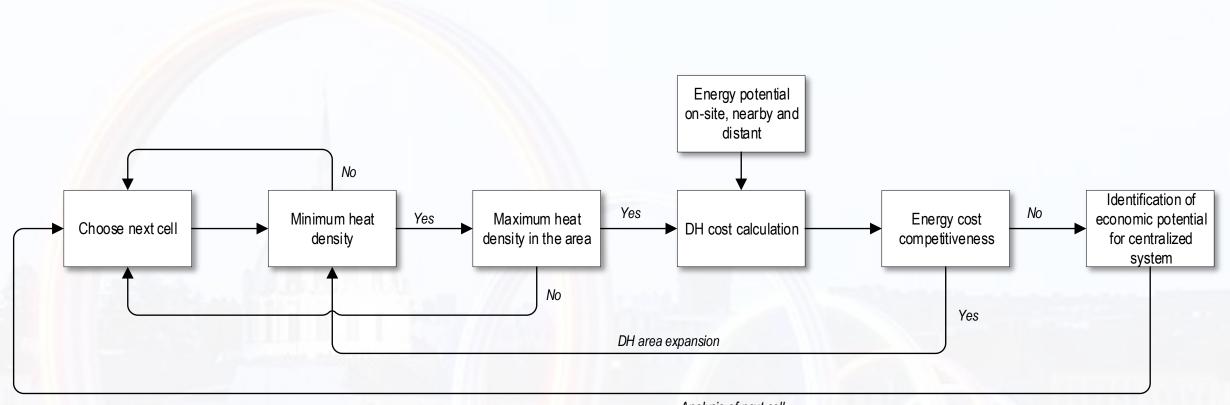
## Development of identification of new DH area model - methods

• Areas with **potential**:

#### **HEAT DENSITY > 100 MWh/ha**

- **DH area size**: Areas where DH energy price competitiveness in ensured.
- Economic feasibility: investment, distribution, O&M (methodology by Heat Roadmap Europe 4, D2.3)
- **Competitiveness**: LCC comparison with the cheapest and "clean" technology available in dense (HP air-water) and sparsely (HP air-water and biomass boiler) populated areas
- Level of detail: 100 x 100m area

Criteria for "TEMPERATURE DIFFERENCE"  $\Delta T - \text{between entry and exit of heat exchanger or between abstraction well and injection well}$   $\Delta T_{amb} - \text{disturbed-undisturbed ambient}$ Heat carrier fluid  $T_{min} \{-3, -1.5, 0, 4\} \circ C$   $T_{max} \{20, 28, 30, 40\} \circ C$   $\Delta T_{amb} \{3-4, 6\} \circ C$ Heat pump  $\Delta T - \text{between entry and exit of heat exchanger or between abstraction well and injection well and injec$ 



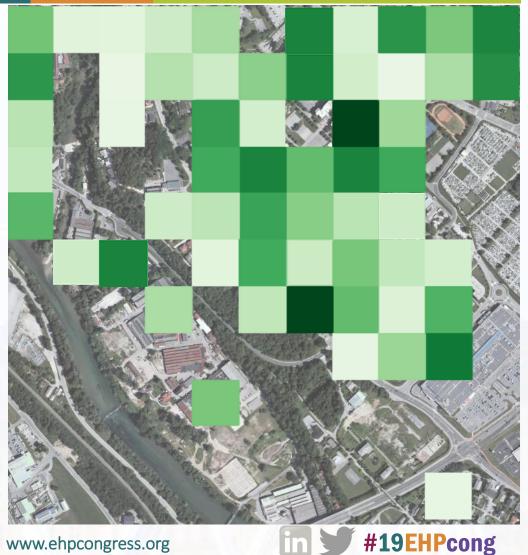

and/or

versus



### Development of identification of new DH area model - algorithm




Analysis of next cell



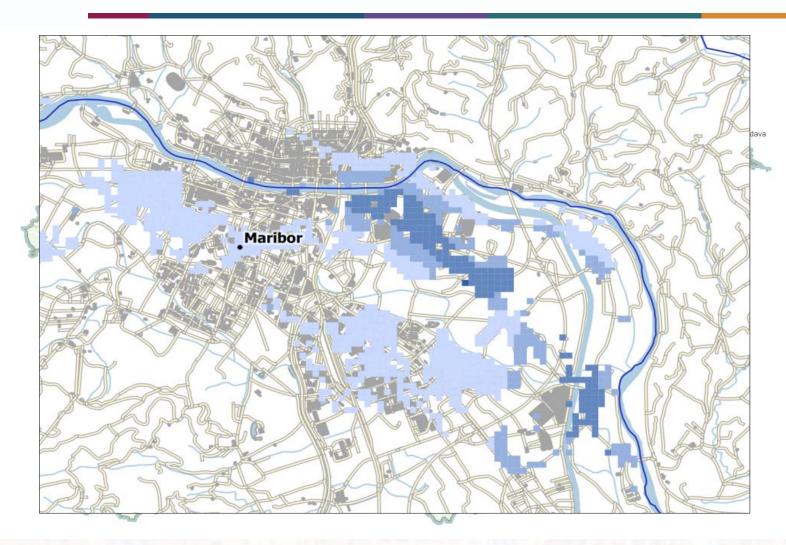
### Development of identification of new DH area model - practical case

Area of a city in Slovenia Heat demand

Area where new DH system would be ecomically feasible



### Results


#### Potential for new DH and micro DH areas in Slovenia is:

| Area     | Unit  | Technical potential | Economic potential for shallow geothermal systems | Heat demand |
|----------|-------|---------------------|---------------------------------------------------|-------------|
| DH       | TWh/a | 45.17               | 0.1                                               | 2.6         |
| Micro DH | TWh/a | 4.36                | 0.9                                               | 2.4         |

Recent studies show that in order to exploit more shallow geothermal energy, systems could be sequentially bound together (on a bigger scale) and thus the exploitation of it could be further boosted.



### New DH areas and other findings



#### The approach revealed:

- new areas where DH systems would be economically feasible today and in 2050,
- due to dispersed settlement it is unlikely the buildings will be supplied heat by DH in 45% share (EU average) in the total share of energy use,
- the amount of geothermal energy that could supply base loadpower to existing DH systems,
- the economical feasibility od geothermal systems as decentralized systems.



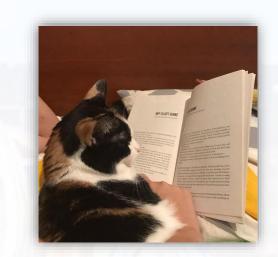
### Conclusion

- Heat pumps technology has been gathering pace as one of the main heating systems in new buildings as well as replacement for old, fossil boilers.
- Technical potential for **new DH areas** is substantial almost 50 TWh/a.
- 54% of technical DH potential in Slovenia remains untapped.
- The future of shallow geothermal energy systems lies **predominantly in individual heating systems**.



### Conclusion

- Economic potential for new <u>centralized</u> systems using shallow geothermal energy is 1 TWh/a, but could rarely be used as the only source for heat production, due to **limited energy** capture from shallow grounds.
- Where possible, shallow geothermal energy can contribute from 2% to 25% of energy for heat production in analysed **existing fossil fuel based DH systems**, thus making shallow geothermal energy suitable for supplying **base load power in** an **economical manner**.




### Thank you!

@ gasper.stegnar@ijs.si







